<meter id="bnvlb"></meter>
      <menuitem id="bnvlb"><strike id="bnvlb"><span id="bnvlb"></span></strike></menuitem>

          <nobr id="bnvlb"></nobr>

          <p id="bnvlb"><listing id="bnvlb"></listing></p>

            人臉識別的起源與技術解析|俊竹科技

            深圳市俊竹科技有限公司是一家專業致力于雙目3D客流統計,客流統計系統,客流統計分析系統,客流量計數器,客流分析系統平臺,人數統計設備,客流計數器技術開發支持的企業,計數準確度高達98%以上。

            人臉識別的起源與技術解析|俊竹科技

            時間:2021-07-01   點擊:651

            人臉識別是指能夠識別或驗證圖像或視頻中的主體的身份的技術。首個人臉識別算法誕生于七十年代初 [1,2]。自那以后,它們的準確度已經大幅提升,現在相比于指紋或虹膜識別 [3] 等傳統上被認為更加穩健的生物識別方法,人們往往更偏愛人臉識別。讓人臉識別比其它生物識別方法更受歡迎的一大不同之處是人臉識別本質上是非侵入性的。比如,指紋識別需要用戶將手指按在傳感器上,虹膜識別需要用戶與相機靠得很近,語音識別則需要用戶大聲說話。相對而言,現代人臉識別系統僅需要用戶處于相機的視野內(假設他們與相機的距離也合理)。這使得人臉識別成為了對用戶最友好的生物識別方法。這也意味著人臉識別的潛在應用范圍更廣,因為它也可被部署在用戶不期望與系統合作的環境中,比如監控系統中。人臉識別的其它常見應用還包括訪問控制、欺詐檢測、身份認證和社交媒體。

            b68b.jpg

            人臉檢測。人臉檢測器用于尋找圖像中人臉的位置,如果有人臉,就返回包含每張人臉的邊界框的坐標。


            人臉對齊。人臉對齊的目標是使用一組位于圖像中固定位置的參考點來縮放和裁剪人臉圖像。這個過程通常需要使用一個特征點檢測器來尋找一組人臉特征點,在簡單的 2D 對齊情況中,即為尋找最適合參考點的最佳仿射變換。圖 3b 和 3c 展示了兩張使用了同一組參考點對齊后的人臉圖像。更復雜的 3D 對齊算法(如 [16])還能實現人臉正面化,即將人臉的姿勢調整到正面向前。


            人臉表征。在人臉表征階段,人臉圖像的像素值會被轉換成緊湊且可判別的特征向量,這也被稱為模板(template)。理想情況下,同一個主體的所有人臉都應該映射到相似的特征向量。


            人臉匹配。在人臉匹配構建模塊中,兩個模板會進行比較,從而得到一個相似度分數,該分數給出了兩者屬于同一個主體的可能性。


            當被部署在無約束條件的環境中時,由于人臉圖像在現實世界中的呈現具有高度的可變性(這類人臉圖像通常被稱為自然人臉(faces in-the-wild)),所以人臉識別也是最有挑戰性的生物識別方法之一。人臉圖像可變的地方包括頭部姿勢、年齡、遮擋、光照條件和人臉表情


            相關閱讀:客流統計|生物識別技術|人流分析


            ? ? ? 人人爱人人爽人人插,人人爽人人添人人超爽,人人爽人人爱人人射_大全